wait...

Description

Your Host

host-img

Sandra

A.

Contacto para reservas especiais. E muito mais ;-)


Izabrali smo sljedeฤ‡e publikacije:
๐”’๐”ณ๐”ฌ ๐”ง๐”ข ๐”ง๐”ž๐”จ๐”ฌ ๐”ท๐”ž๐”ซ๐”ฆ๐”ช๐”ฉ๐”ง๐”ฆ๐”ณ ๐”ฑ๐”ข๐”จ๐”ฐ๐”ฑ ๐”ฐ๐”ž ๐”ท๐”ž๐”ซ๐”ฆ๐”ช๐”ฉ๐”ง๐”ฆ๐”ณ๐”ฆ๐”ช ๐”ฃ๐”ฌ๐”ซ๐”ฑ๐”ฌ๐”ช.
๐˜–๐˜ท๐˜ฐ ๐˜ซ๐˜ฆ ๐˜ซ๐˜ข๐˜ฌ๐˜ฐ ๐˜ป๐˜ข๐˜ฏ๐˜ช๐˜ฎ๐˜ญ๐˜ซ๐˜ช๐˜ท ๐˜ต๐˜ฆ๐˜ฌ๐˜ด๐˜ต ๐˜ด๐˜ข ๐˜ป๐˜ข๐˜ฏ๐˜ช๐˜ฎ๐˜ญ๐˜ซ๐˜ช๐˜ท๐˜ช๐˜ฎ ๐˜ง๐˜ฐ๐˜ฏ๐˜ต๐˜ฐ๐˜ฎ.
๐’ช๐“‹๐‘œ ๐’ฟ๐‘’ ๐’ฟ๐’ถ๐“€๐‘œ ๐“๐’ถ๐“ƒ๐’พ๐“‚๐“๐’ฟ๐’พ๐“‹ ๐“‰๐‘’๐“€๐“ˆ๐“‰ ๐“ˆ๐’ถ ๐“๐’ถ๐“ƒ๐’พ๐“‚๐“๐’ฟ๐’พ๐“‹๐’พ๐“‚ ๐’ป๐‘œ๐“ƒ๐“‰๐‘œ๐“‚.
๐•†๐•ง๐•  ๐•›๐•– ๐•›๐•’๐•œ๐•  ๐•ซ๐•’๐•Ÿ๐•š๐•ž๐•๐•›๐•š๐•ง ๐•ฅ๐•–๐•œ๐•ค๐•ฅ ๐•ค๐•’ ๐•ซ๐•’๐•Ÿ๐•š๐•ž๐•๐•›๐•š๐•ง๐•š๐•ž ๐•—๐• ๐•Ÿ๐•ฅ๐• ๐•ž.
โ€ขFruit ripeness identification using YOLOv8 model
๐Ÿ”ดAutori: Bingjie Xiao, Minh Nguyen, Wei Qi Yan
โ˜‘๏ธInstitucija: Auckland University of Technology, Auckland 1010, New Zealand
โ€ขFresh and Rotten Fruits Classification Using CNN and Transfer Learning
๐Ÿ”ดAutori: Sai Sudha Sonali Palakodati, Venkata RamiReddy Chirra , Yakobu Dasari, Suneetha Bulla
โ˜‘๏ธInstitucija: Department of Computer Science & Engineering, Vignanโ€™s Foundation for Science Technology and Research, Guntur 522213, India
โ€ขFruit Classification based on ResNet and Attention Mechanism

๐Ÿ”ดAutori: Miaorun Lin
โ˜‘๏ธInstitucija: Odjel za telekomunikacijski inลพenjering i menadลพment, Sveuฤiliลกte za poลกtu i telekomunikacije u Pekingu, Kina
๐—ก๐—ฎ๐˜‡๐—ถ๐˜ƒ ๐—ฟ๐—ฎ๐—ฑ๐—ฎ: Fresh and Rotten Fruits Classification Using CNN and Transfer Learning

๐‘จ๐’–๐’•๐’๐’“: Sai Sudha Sonali Palakodati, Venkata RamiReddy Chirra , Yakobu Dasari, Suneetha Bulla
๐•ด๐–“๐–˜๐–™๐–Ž๐–™๐–š๐–ˆ๐–Ž๐–๐–†: Department of Computer Science & Engineering, Vignanโ€™s Foundation for Science Technology and Research, Guntur 522213, India

๐—–๐—ถ๐—น๐—ท ๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜‡๐—ถ๐˜ƒ๐—ฎ๐—ป๐—ท๐—ฎ:

Detekcija trulog voฤ‡a postaje znaฤajna u poljoprivrednoj industriji. Obiฤno, klasifikacija svjeลพeg i trulog voฤ‡a je izvrลกavanja od strane ljudi ลกto je neefikasno. Ljudi ฤ‡e se umoriti radeฤ‡i isti zadatak viลกe puta, ali maลกine neฤ‡e. Dakle, projekat predlaลพe pristup za smanjenje ljudskog rada, smanjenje troลกkova i vremena za proizvodnju utvrฤ‘ivanjem trulog voฤ‡a. Ako se ne otkrije defektovano voฤ‡e, ono moลพe pokvariti ispravno voฤ‡e.


๐‘ฒ๐’๐’“๐’Šลก๐’•๐’†๐’๐’† ๐’•๐’†๐’‰๐’๐’Š๐’Œ๐’†:
U radu je predstavljen model za detekciju trulog voฤ‡a koristeฤ‡i slike voฤ‡a kao ulaz. Skup podataka preuzet sa Kaggle-a je koriลกten za treniranje i sadrลพi 3 tipa voฤ‡a: banane, jabuke i narandลพe sa 6 klasa. Svako voฤ‡e imao svoju klasu: svjeลพe i trulo. Ukupna veliฤina skupa podataka je 5989 slika. Od toga 3596 slika za trening, 598 slika za validaciju i 1797 slika za testiranje. Model je razvijen koristeฤ‡i konvolucijske neuronske mreลพe i prijenosno uฤenje. Konvolucijske neuronske mreลพe su koriลกtene za treniranje modela na trening skupu podataka, dok je tehnika prijenosnog uฤenja koriลกtena za fino podeลกavanje istreniranog modela.

Your Host

host-img

Sandra

A.

Contacto para reservas especiais. E muito mais ;-)


Izabrali smo sljedeฤ‡e publikacije:
๐”’๐”ณ๐”ฌ ๐”ง๐”ข ๐”ง๐”ž๐”จ๐”ฌ ๐”ท๐”ž๐”ซ๐”ฆ๐”ช๐”ฉ๐”ง๐”ฆ๐”ณ ๐”ฑ๐”ข๐”จ๐”ฐ๐”ฑ ๐”ฐ๐”ž ๐”ท๐”ž๐”ซ๐”ฆ๐”ช๐”ฉ๐”ง๐”ฆ๐”ณ๐”ฆ๐”ช ๐”ฃ๐”ฌ๐”ซ๐”ฑ๐”ฌ๐”ช.
๐˜–๐˜ท๐˜ฐ ๐˜ซ๐˜ฆ ๐˜ซ๐˜ข๐˜ฌ๐˜ฐ ๐˜ป๐˜ข๐˜ฏ๐˜ช๐˜ฎ๐˜ญ๐˜ซ๐˜ช๐˜ท ๐˜ต๐˜ฆ๐˜ฌ๐˜ด๐˜ต ๐˜ด๐˜ข ๐˜ป๐˜ข๐˜ฏ๐˜ช๐˜ฎ๐˜ญ๐˜ซ๐˜ช๐˜ท๐˜ช๐˜ฎ ๐˜ง๐˜ฐ๐˜ฏ๐˜ต๐˜ฐ๐˜ฎ.
๐’ช๐“‹๐‘œ ๐’ฟ๐‘’ ๐’ฟ๐’ถ๐“€๐‘œ ๐“๐’ถ๐“ƒ๐’พ๐“‚๐“๐’ฟ๐’พ๐“‹ ๐“‰๐‘’๐“€๐“ˆ๐“‰ ๐“ˆ๐’ถ ๐“๐’ถ๐“ƒ๐’พ๐“‚๐“๐’ฟ๐’พ๐“‹๐’พ๐“‚ ๐’ป๐‘œ๐“ƒ๐“‰๐‘œ๐“‚.
๐•†๐•ง๐•  ๐•›๐•– ๐•›๐•’๐•œ๐•  ๐•ซ๐•’๐•Ÿ๐•š๐•ž๐•๐•›๐•š๐•ง ๐•ฅ๐•–๐•œ๐•ค๐•ฅ ๐•ค๐•’ ๐•ซ๐•’๐•Ÿ๐•š๐•ž๐•๐•›๐•š๐•ง๐•š๐•ž ๐•—๐• ๐•Ÿ๐•ฅ๐• ๐•ž.
โ€ขFruit ripeness identification using YOLOv8 model
๐Ÿ”ดAutori: Bingjie Xiao, Minh Nguyen, Wei Qi Yan
โ˜‘๏ธInstitucija: Auckland University of Technology, Auckland 1010, New Zealand
โ€ขFresh and Rotten Fruits Classification Using CNN and Transfer Learning
๐Ÿ”ดAutori: Sai Sudha Sonali Palakodati, Venkata RamiReddy Chirra , Yakobu Dasari, Suneetha Bulla
โ˜‘๏ธInstitucija: Department of Computer Science & Engineering, Vignanโ€™s Foundation for Science Technology and Research, Guntur 522213, India
โ€ขFruit Classification based on ResNet and Attention Mechanism

๐Ÿ”ดAutori: Miaorun Lin
โ˜‘๏ธInstitucija: Odjel za telekomunikacijski inลพenjering i menadลพment, Sveuฤiliลกte za poลกtu i telekomunikacije u Pekingu, Kina
๐—ก๐—ฎ๐˜‡๐—ถ๐˜ƒ ๐—ฟ๐—ฎ๐—ฑ๐—ฎ: Fresh and Rotten Fruits Classification Using CNN and Transfer Learning

๐‘จ๐’–๐’•๐’๐’“: Sai Sudha Sonali Palakodati, Venkata RamiReddy Chirra , Yakobu Dasari, Suneetha Bulla
๐•ด๐–“๐–˜๐–™๐–Ž๐–™๐–š๐–ˆ๐–Ž๐–๐–†: Department of Computer Science & Engineering, Vignanโ€™s Foundation for Science Technology and Research, Guntur 522213, India

๐—–๐—ถ๐—น๐—ท ๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜‡๐—ถ๐˜ƒ๐—ฎ๐—ป๐—ท๐—ฎ:

Detekcija trulog voฤ‡a postaje znaฤajna u poljoprivrednoj industriji. Obiฤno, klasifikacija svjeลพeg i trulog voฤ‡a je izvrลกavanja od strane ljudi ลกto je neefikasno. Ljudi ฤ‡e se umoriti radeฤ‡i isti zadatak viลกe puta, ali maลกine neฤ‡e. Dakle, projekat predlaลพe pristup za smanjenje ljudskog rada, smanjenje troลกkova i vremena za proizvodnju utvrฤ‘ivanjem trulog voฤ‡a. Ako se ne otkrije defektovano voฤ‡e, ono moลพe pokvariti ispravno voฤ‡e.


๐‘ฒ๐’๐’“๐’Šลก๐’•๐’†๐’๐’† ๐’•๐’†๐’‰๐’๐’Š๐’Œ๐’†:
U radu je predstavljen model za detekciju trulog voฤ‡a koristeฤ‡i slike voฤ‡a kao ulaz. Skup podataka preuzet sa Kaggle-a je koriลกten za treniranje i sadrลพi 3 tipa voฤ‡a: banane, jabuke i narandลพe sa 6 klasa. Svako voฤ‡e imao svoju klasu: svjeลพe i trulo. Ukupna veliฤina skupa podataka je 5989 slika. Od toga 3596 slika za trening, 598 slika za validaciju i 1797 slika za testiranje. Model je razvijen koristeฤ‡i konvolucijske neuronske mreลพe i prijenosno uฤenje. Konvolucijske neuronske mreลพe su koriลกtene za treniranje modela na trening skupu podataka, dok je tehnika prijenosnog uฤenja koriลกtena za fino podeลกavanje istreniranog modela.

Sensation Details

For lovers of:

Cultural and Landscape and In the City.

Risk level:

Low

Duration:

04:00 Hours

GPS Location:

Lat: 39.9999 N Long: 8.0 W

Meeting point:

Rua da Betesga, 1B

Translator:

Human

Translation for:

English, Portuguese

Useful Information

Customers:

Minimum: 1 Maximum: 15

Children:

Allowed (Up to the age of 14)

Babies:

Allowed (Up to the age of 3)

Youth:

Allowed (Up to the age of 17)

Students:

Allowed (Up to the age of 24)

Seniors:

Allowed (From the age of 65)

Reservation:

Within: 24 hours

Prices (Per Person)

Adults:

From 40.00 โ‚ฌ up to 55.00 โ‚ฌ

Children:

From 10.00 โ‚ฌ up to 35.00 โ‚ฌ

Babies:

From 5.00 โ‚ฌ up to 10.00 โ‚ฌ

Youth:

Free If allowed

Students:

Free If allowed

Seniors:

Free If allowed

Payment To Provider

Pays accepted:

Cash ; Credit Card ; Debit Card ;

Vouchers accept:

['Paper', 'Electronic']

Detailed Start Times (2025)

Month(s):

January - December

Hour(s):

09:00h / 10:00h / 12:00h / 14:00h / 15:00h / 16:00h

Detailed Start Times (2026)

Month(s):

No start times defined yet for next year

Private
Sensation

FROM 40.00 EUR

TO 55.00 EUR

ONLY 20% TO BOOK

calandar-icon
time-icon
time-icon
calandar-icon
calandar-icon
baby-icon
senior-icon
teen-icon
senior-icon

Booking fee:

00,00 EUR

Total:

00,00 EUR

Sensation Details

For lovers of:

Cultural and Landscape and In the City.

Risk level:

Low

Duration:

04:00 Hours

GPS Location:

Lat: 39.9999 N / Long: 8.0 W

Meeting point:

Rua da Betesga, 1B

Translator:

Human

Translation for:

English, Portuguese

Useful Information

Customers:

Minimum: 1 Maximum: 15

Children:

Allowed (Up to the age of 14)

Babies:

Allowed (Up to the age of 3)

Youth:

Allowed (Up to the age of 17)

Students:

Allowed (Up to the age of 24)

Seniors:

Allowed (From the age of 65)

Reservation:

Within: 24 hours

Prices (Per Person)

Adults:

From 40.00 โ‚ฌ up to 55.00 โ‚ฌ

Children:

From 10.00 โ‚ฌ up to 35.00 โ‚ฌ

Babies:

From 5.00 โ‚ฌ up to 10.00 โ‚ฌ

Youth:

Free If allowed

Students:

Free If allowed

Seniors:

Free If allowed

Payment To Provider

Pays accepted:

Cash ; Credit Card ; Debit Card ;

Vouchers accept:

['Paper', 'Electronic']

Detailed Start Times (2025)

Month(s):

January - December

Hour(s):

09:00h / 10:00h / 12:00h / 14:00h / 15:00h / 16:00h

Detailed Start Times (2026)

Month(s):

No start times defined yet for next year